OREGON STATE UNIVERSITY

For More Information

 

Some examples of relevant peer-reviewed journal articles include:

 

Appelgate, B., and Embley, R.W., 1992, Submarine tumuli and inflated tube-fed lava flows on Axial Volcano, Juan de Fuca Ridge: Bulletin of Volcanology, v. 54, p. 447-458.

Baker, E.T., Massoth, G.J., and Feely, R.A., 1987, Cataclysmic hydrothermal venting on the Juan de Fuca Ridge: Nature, v. 329, p. 149-151.

Ballard, R.D., and Tj. H. van Andel, 1977, Morphology and tectonics of the inner rift valley at lat 36.50N on the Mid-Atlantic Ridge: Geological Society of America Bulletin, v. 88, p. 507-530.

Batiza, R., 1989, Petrology and geochemistry of Pacific Spreading Centres in The Geology of North America, v. N, The eastern Pacific Ocean and Hawaii, Geological Society of America, p. 145-159.

Batiza, R., 1989, Seamounts and seamount chains in the eastern Pacific in The Geology of North America, v. N, The eastern Pacific Ocean and Hawaii, Geological Society of America, p. 289-306.

Batiza, R., and Vanko, D., 1983/84, Volcanic development of small oceanic central volcanoes on the flanks of the east Pacific Rise inferred from narrow-beam echo sounders surveys: Marine Geology, v. 54, p. 53-90.

Bougault, H., J.-L. Charlou, Y. Fouquet, H.D. Needham, N. Vaslet, P. Appriou, P. Jean-Baptiste, P.A. Rona, L. Dmitriev and S. Silantiev, Fast and slow spreading ridges: Structure and hydrothermal activity, ultramafic topographic highs, and CH4 output, J. Geophys. Res. B 98, 9643-9651, 1993.

Bridges, N.T., 1995, Submarine analogs to Venusian pancake domes: Geophysical Research Letters, v. 22, p. 2781-2784.

Bryan, W.B., Humphris, S.E., Thompson, B., and Casey, J., 1994, Comparative volcanology of small axial eruptive centers in the MARK area: Journal of Geophysical Research, v. 99, p. 2973-2984.

Cashman, K.V., and Fiske, R.S., 1991, Fallout of pyroclastic debris from submarine volcanic eruptions: Science, v. 253, p. 275-281.

Chadwick, W. W., Jr., and Embley, R. W., 1994, Lava flows from a mid-1980s submarine eruption on the Cleft Segment, Juan de Fuca Ridge: Journal of Geophysical Research, v. 99, p. 4761-4776.

Chadwick, W. W., Jr., Embley, R. W., and Fox, C.G., 1995, SeaBeam depth changes associated with recent lava flows, CoAxial segment, Juan de Fuca Ridge: Evidence for multiple eruptions between 1981-1993: Geophysical Research Letters, v. 22, p. 167-170.

Clague, D.A., Holcomb, R.T., Sinton, J.M., Detrick, R.S., and Torresan, M.R., 1990, Pliocene and Pleistocene alkalic flood basalts on the seafloor north of the Hawaiian Islands: Earth and Planetary Science Letters, v. 98, p. 175-191.

Cone, J., 1994, Life's undersea beginnings: Earth, v. 3, p. 34-41.

Davey, F.J., 1980, The Monowai seamount: an active submarine volcanic centre on the Tonga-Kermadec ridge (Note): New Zealand Journal of Geology and geophysics, v. 23, p. 533.

Dick, H.J.B., Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism, in Magmatism in the Ocean Basins, A.D. Saunders and M.J. Norry (eds.), Geol. Soc. Lond. Spec. Pub. 42, 71-105, 1989.

Embley, R. W., Chadwick, W. W., Jr., Jonasson, I. R., Butterfield, D. A., and Baker, E. T., 1995, Initial results of the rapid response to the 1993 CoAxial event: Relationships between hydrothermal and volcanic processes: Geophysical Research Letters, v. 22, p. 143-146.

Embley, R. W., and Chadwick, W. W., Jr., 1994, Volcanic and hydrothermal processes associated with a recent phase of seafloor spreading at the northern Cleft segment: Juan de Fuca Ridge: Journal of Geophysical Research, v. 99, p. 4741-4760.

Fisher, R.V., Heiken, G., and Hulen, J.B., 1997, Volcanoes: Crucibles of Change: Princeton University Press, Princeton, New Jersey, 317 p.

Fox, C. G., Five years of ground deformation monitoring on Axial Seamount using a bottom pressure recorder, Geophys. Res. Lett., 20, 1859-1862, 1993.

Fox, C.G., W.E. Radford, R.P. Dziak, T.-K. Lau, H. Matasumoto, and A.E. Schreiner, 1995. Acoustic detection of a seafloor spreading episode on the Juan de Fuca Ridge using military hydrophone arrays, Geophysical Research Letters, v. 22, p. 131-134.

Francheteau, J., Juteau, T., and Rangna, R., 1979, Basaltic pillars in collapsed lava pools on the deep ocean floor: Nature, v. 281, p. 209-211.

Francis, P., 1994, Volcanoes a planetary perspective: Oxford University Press, New York, 443 p.

Francis, P.W., and Self, S., 1983, The eruption of Krakatau: Scientific American, v. 249, p. 172-187.

Franklin, J.M., Lydon, J.W., and Sangster, D.F., 1981, Volcanic associated massive sulphide deposits: Economic Geology 75th Anniversary Vol., p. 485-627.

Grindlay, N.R., J.A. Madsen, S. Murphy, C. Rommevaux and J. Sclater, Preliminary results of a high-resolution investigation of an ultra-slow spreading center: Southwest Indian Ridge between 15¡E and 35¡E, Eos, Trans., AGU 76, 272, 1996a.

Halbach, P. and others, 1989, Probable modern analogue of Kuroko-type massive sulphide deposits in the Okinawa trough back-arc basin: Nature, v. 338, p. 496-499.

Haymon, R., D.J. Fornari, K. Von Damm, M. Lilley, M. Perfit, J. Edmond, W.C. Shanks III, Lutz, and others, 1993, Volcanic eruption of the mid-ocean ridge along the East Pacific at 9(45-52'N: I. Direct submersible observation of seafloor phenomena associated with an eruption event in April, 1991, Earth Planet. Sci. Lett., 199, 85-101.

Haymon, R., and others, 1991, Active eruption seen on East Pacific Rise: Eos, v. 72, p. 505-507.

Haymon, R.M., and Macdonald, K.C., 1985, The geology of deep-sea hot springs: American Scientist, v. 73, p. 441-449.

Head, J.W., III, Wilson, L., and Smith, D.K., Mid-ocean ridge eruptive vents: Evidence for dike widths, eruption rates, and evolution of eruptions and axial volcanic ridges: Journal of Geophysical Research, v. 101, p. 28,265-28,280.

Herzig, P., Hannington, M, McInnes, B., Stoffers, P., Villinger, H., Seifert, R, Binns, R., and Liebe, T. 1994. Submarine volcanism and hydrothermal venting studied in Papua New Guinea, EOS, American Geophysical Union, 75 (44), 513-516.

Johnson, H.P., and Embley, R.W., 1990, Axial Seamount: An active ridge axis volcano on the central Juan de Fuca Ridge: Journal of Geophysical Research, v. 95, p. 12,689-12,696.

Lin, J., Purdy, G.M., Schouten, H., Sempere, J.-C., and Zervas, C., 1990, Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge: Nature, v. 344, p. 627-632.

Livermore, B., 1993. Satellite images turn up the focus on the ocean's floor. Sea Frontiers, v. 39, no. 3, p. 40-45

1996 Loihi Science Team, 1997, Researchers rapidly respond to submarine activity at Loihi volcano, Hawaii: Eos, v. 78, p. 229, 232-233.

Lutz, R.A., R. M. Haymon, 1994. Rebirth of a deep sea vent. National Geographic Magazine 186:114-126.

Lonsdale, P., 1977, Structural geomorphology of a fast-spreading rise crest: The East Pacific Rise near 3 25'S: Marine Geophysics Research, v. 3, p. 251-293.

Macdonald, K.C., 1982, Mid-ocean ridges: fine scale tectonic, volcanic, and hydrothermal processes within the plate boundary zone: Annual Review Earth Planetary, 10, p. 155-190.

Macdonald, K.C. and P.J. Fox, The mid-ocean ridge, Scientific American 262:72-79, 1990.

Macdonald, K.C. and P.J. Fox, The axial summit graben and cross-sectional shape of the East Pacific Rise as indicators of axial magma chambers and recent volcanic eruptions: Earth and Planetary Science Letters, v. 88, p. 119-131.

Macdonald, K.C., R.M. Haymon and A.N. Shor, A 220 km2 recently erupted lava field on the East Pacific Rise near 8¡S, Geology 17: 212-216, 1989.

McInnes, B.I.A., Herzing, P.M. and Hannington, M. 1996. Gold deposition mechanisms in submarine arc volcanoes near Lihir Island, Papua New Guinea. EOS v.77, no. 22, p.118.

McInnes, B.I.A., Binns, R.A., Herzig, P.M., Hannington, M.D. and Binns, R.A. Xenoliths of oceanic fore-arc lithosphere from a submarine lamprophyre cinder cone volcano, Lihir Island Group, Papua New Guinea, in prep. for Earth & Planetary Science Letters.

Mendel, V. and D. Sauter, Seamount volcanism at the super slow spreading Southwest Indian Ridge between 57¡E and 70¡E, Geology, 25(2), 99-102, 1997.

Mendel, V., D. Sauter, L. Parson, and R.J. Vanney, Segmentation and morphotectonic variation along an ultra low spreading centre: the Southwest Indian Ridge (57¡-70¡E), Mar. Geophys. Res., submitted.

Mendel, V., D. Sauter, L. Parson, R.J. Vanney, P. Patriat and M. Munschy, Segmentation of the Southwest Indian Ridge between 57¡E and 70¡E, Eos, Trans., AGU 75, 1995.

Moore, J.G., 1975, Mechanism of formation of pillow lava: American Scientist, v. 63, p. 269-277.

Perfit, M.R., Fornari, D.J., Smith, M.C., Bender, J.F., Langmuir, C.H., and Haymon, R.M., 1994, Small-scale spatial and temporal variations in mid-ocean ridge crest magmatic processes: Geology, v. 22, p. 375-379.

Pluger, W., P. Herzig, K. Becker, G. Deissman, D. Schops, et al., Discovery of hydrothermal fields at the Central Indian Ridge, Marine Mining 9, 73-86, 1990.

Price, R.C., A.K. Kennedy, M. Riggs-Sneeringer and F.A. Frey, Geochemistry of basalts from the Indian Ocean triple junction: Implications for the generation and evolution of Indian Ocean ridge basalts, Earth Plant. Sci. Lett. 78, 379-396, 1986.

Robinson, C.J., R.S. White, M.J. Bickle and T.A. Minshull, Restricted melting under the very slow-spreading Southwest Indian Ridge, in Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid-Ocean Ridges, C.J. MacLeod, P.A. Tyler and C.L. Walker (eds.) Geol. Soc. Lond. Spec. Pub. 118, 131-141, 1996.

Rommevaux, C., Ph. Patriat, C. Deplus, M. Munschy, D. Sauter and V. Mendel, Crustal production of an ultra-slow spreading ridge: 3-D gravity study of the Southwest Indian Ridge between the Melville FZ and the triple junction; comparison with the central Mid-Atlantic Ridge, Eos, Trans., AGU 75, 654, 1994.

Rubin, K.H., Macdougall, J.D., and Perfit, M.R., 1994, 210Po-210Pb dating of recent volcanic eruptions on the sea floor: Nature, v. 368, p. 841-844.

Sato, T., 1974, Distribution and geologic setting of the Kuroko deposits: Society. Min. Geol. Japan Special Issue 6, p. 1-9.

Sauter, D. and V. Mendel, Variations of Backscatter Strength along the super slow spreading Southwest Indian Ridge between 57¡-70¡E, Mar. Geology, in press.

Scarth, A., 1994, Volcanoes: Texas A&M Press, 273 p. Scheirer, D.S., and Macdonald, K.C., 1995, Near-axis seamounts on the flanks of the East Pacific Rise, 8N to 17 N: Journal of Geophysical Research, v. 100, p. 2239-2259.

Simkin, T., 1972, Origin of some flat-topped volcanoes and guyots, in Shagam, R., Hargraves, R.B., and others, eds., Studies in earth and space sciences: Geological Society of America Memoir 132, p. 183-193.

Sinton, J.M., and Detrick, R.S., 1992, Mid-ocean ridge magma chambers: Journal of Geophysical Research, v. 97, p. 197-216.

Smith, D.K., and Cann, J.R., 1990, Hundreds of small volcanoes on the median valley floor of the Mid-Atlantic ridge at 24-30N: Nature, v. 348, p. 152-155.

Smith, D.K., and Cann, J.R., 1992, The role of seamount volcanism in crustal construction at the Mid-Atlantic Ridge: Journal of Geophysical Research, v. 97, p. 1645-1658.

Smith, D.K., Humphris, S.E., Tivey, M.A., and Cann, J.R., 1997, Viewing the morphology of the Mid-Atlantic Ridge from a new perspective: Eos, v. 78, p. 265, 269.

Smith, D.K., and others, 1997, Mid-Atlantic Ridge volcanism from deep-towed side-scan sonar images, 25-29N: Journal of Volcanology and Geothermal Resources.

Smith, T.L., and Batiza, R., 1989, New field and laboratory evidence for the origin of hyaloclastite flows on seamount summits: Bulletin of Volcanology, v. 51, p. 96-114.

Solomon, S.C., Just how do ocean ridges vary?: Characteristics and population statistics of ocean ridges, in Drilling the Oceanic Lower Crust and Mantle, JOI/USSAC Workshop Report, Woods Hole Oceanographic Institution Technical Report WHOI-89-39, pp. 73-74, 1989.

Tribble, G.W., 1991, Underwater observations of active lava flows from Kilauea volcano, Hawaii: Geology, v. 19, p. 633-636.

Tunnicliffe, V., 1992. Hydrothermal-vent communities of the deep sea. American Scientist, v. 80, p. 336-349.

Tunnicliffe, V. and C.M.R. Fowler, Influence of sea-floor spreading on the global hydrothermal vent fauna, Nature 379, 531-533, 1996.

Van Dover, C.L., Ecology of Mid-Atlantic Ridge hydrothermal vents, in Hydrothermal vents and processes, L.M. Parson, C.L. Walker and D.R. Dixon (eds.), Geol. Soc. London Spec. Pub. 87, 257-294, 1995.

Vogt, P.R., and Smoot, N.C., 1984, The geisha guyots: Multi-beam bathymetry and morphometric interpreatation: Journal of geophysical Research, v. 89, p. 11085-11107.

Zonenshain, L.P., Kuzmin, M.I., Bogdanov, Y.A., Lisitsin, A.P., and Podrazhansky, A.M., 1989, Geology of the Axial seamount, Juan de Fuca center, Northeastern Pacific, in Sinton, J.M., ed., Evolution of Mid-Ocean Ridges, Geophysical Monograph 57, IUGG volume 8, American Geophysical Union, International Union of Geodesy and Geophysics, p. 53-63.

 

Some other excellent sources of additional information

 

The Monterey Bay Aquarium Research Institute is an institute designed create an environment where scientists and engineers could work together to develop new cutting-edge tools for marine research including submarine volcanism.

OSU's /Deepsea Dawn/ Wright has completed oceanographic fieldwork (oftentimes with GIS) in some of the most geologically-active regions on the planet, including the East Pacific Rise, the Mid-Atlantic Ridge, the Juan de Fuca Ridge, the Tonga Trench, volcanoes under the Japan Sea and the Indian Ocean, and, most recently, American Samoa.
Click here to see pictures, obtain GIS resources, and learn more about Deepsea Dawn!.

Everything you ever wanted to know about Submarine Volcanoes, Ridges, and Vents can be found at the USGS Cascades Volcano Observatory (CVO) Submarine Volcano Directory page.

The Vents Program is part of NOAA's Pacific Marine Environmental Laboratory and has excellent photos and movies of ocean floor volcanic features, summaries of their current research, and descriptions of recent submarine eruptions.

The Marine Geoscience Data System has several types of data available on their homepage included excellent maps of ridge segments.

The homepage of the Woods Hole Oceanographic Institute is excellent and includes a gallery of animation and video.

The Ocean Science section of the Smithsonian's Ocean Planet exhibition contains excellent descriptions of recent discoveries about volcanoes and life.

Excellent maps of the general features of the ocean floor are available on the National Geographic Society Online Atlas Explorer.

NASA scientists have created a two-minute animated tour under the Pacific Ocean, based on real data about the sea floor's peaks and valleys. Submerge near Hawaii, run like a submarine to Japan, and finally dive to the ocean's deepest point, between Japan and New Guinea.

Photos of chimneys and life at submarine volcanoes and Deep Sea Movies are available on the Global Observation Information Network ( GOIN ) Project homepage.

New World Seamount is being studied by CSIRO, the Australian federal research organization. An image of the seamount, made from bathymetry data, is available on the CSIRO Exploration & Mining (Magmatic-Hydrothermal Cu-Au Group) homepage.

The 1996 eruption at Loihi seamount is described by the Hawaii Center for Volcanology.

Loihi: Hawaii's Newest Volcano is a short U.S. Geological Survey description of this submarine volcano.

To see a classic bit of oceanic crust that has been thrusted up on a continent (an ophiolite ) visit the Oman Virtual Fieldtrip.