Pahoehoe flows differ from 'a'a flows in almost all ways imaginable. The first and most obvious difference is that pahoehoe flows are smooth down to a scale of a few mm. Instead of consisting of only 1-2 large flow units, a pahoehoe flow consists of thousands on thousands of small flow units called toes. Each toe is usually <30 cm thick, 1-2 m long, and 30-50 cm wide. Pahoehoe flows are associated with low-effusion rate eruptions and are emplaced at low volumetric flow rates (2-5 cubic meters per second) and slow flow front velocities (1-10 m/hour). Pahoehoe flows can be just as long as 'a'a flows. The longest post-contact flow was also erupted from Mauna Loa in 1859 (forming the second half of the "paired flow"; Rowland & Walker 1990), and is 47 km long. This strongly contradicts the notion that flow length is directly determined by effusion rate.

The low velocity of pahoehoe flows means that the skin that forms by air-cooling is not disrupted during flow and can maintain its smooth, unbroken, well-insulating surface. Thus the temperature and viscosity of lava do not change very much even tens of kilometers from the vent. The advancing front of a pahoehoe flow consists of hundreds or thousands of active toes. Each stops flowing after a few minutes and becomes inflated (with lava) as the eruption continues. Eventually the cooled skin fractures, often at the seam between two toes, and a new toe forms.